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1. INTRODUCTION

Core samples are long cylindrical pieces of rock drilled in prospective mining sites. The decision to mine or not is dependent on
the analysis of core samples. AngloGold Ashanti has developed the Hyperspectral Core Imager (HCI) to produce hyperspectral
images of core samples. By analyzing the spectra of different points in the resulting image it is possible to determine the mineral
composition of a core sample. However, an accurate automated method remains elusive, due to the complexity and the size of
the data.

The core supposition of this paper is that the data produced by the HCI is highly redundant. The HCI produces images with
640 bands, using three different spectrometers with overlapping ranges. Because the spectrometers are not exactly spatially
aligned, it is not possible to use all the bands at the same time. Instead, only the bands from the spectrometer located in the
short-wave infrared area (the area most sensitive to minerals) are used. The resulting data is very noisy, suggesting that it can
be considerably simplified. The redundancy in the data is exploited by reducing the dimensionality further using a diffusion
map. An unsupervised clustering method is used to partition the resulting lower-dimensional image into its constituent mineral
clusters. By embedding template spectra in the original higher-dimensional data, the dominant mineral in each cluster may be
identified. This paper builds on research published in [1] and [2].

2. DIFFUSION MAPS

Diffusion maps provide a nonlinear method for reducing the dimensionality of a dataset, while preserving local connectivity. A
Markov random walk is defined on the data, and the diffusion distance is a metric on the resulting Markov matrix. The diffusion
distance compares all possible paths between the two points being compared, making it very robust to noise [3].

The diffusion distance can be written as a function of the eigenvalues and eigenvectors of the resulting Markov matrix. The
distance can be accurately approximated by only using the largest eigenvalues and corresponding eigenvectors. A diffusion
map maps the data to a space with dimension equal to the number of eigenvalues and eigenvectors used to approximate the
diffusion distance. This space also has the property that the ordinary Euclidean distance is equivalent to the diffusion distance
in the original high-dimensional representation.

More information on diffusion maps can be found in [3] and [4].
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(a) One band of the original image. (b) Clustering produced.

Fig. 1. An example clustering produced by separately reducing the dimension of three sub-images and clustering each sub-
image using k-means. The results were merged to produce this image.

3. EXPERIMENTAL RESULTS

Because the diffusion map essentially squares the amount of data, it is at present infeasible to perform the process on complete
datasets. To remedy this problem the dataset is divided into overlapping sub-images, which are individually transformed into
their lower-dimensional representations. The composition of clusters are found by embedding template spectra of all expected
minerals into the untransformed higher-dimensional data. By correlating the spatial location of clusters and the composition of
clusters, the sub-images can be merged to produce a map of the complete dataset.

At present, k-means [1] and fuzzy ART [2] have been used to cluster the lower dimensional representation of the data. The
results are promising and consistent with expectations and results obtained by AngloGold’s proprietary method. An example is
given in figure 1. This image was produced by performing a diffusion map on three overlapping sub-images. The dimension of
the data was reduced from 100 to 20 dimensions. The three resulting 20-dimensional representations were then clustered using
k-means, and the results merged to produce the image given in figure 1.
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